
Universal joystick and gamepad controller chips



- **1.0 Features**USB interface
- USD Interface • Full USB V1 1/2
- Full USB V1.1/2.0 complianceFull USB HID 1.1 compliance
- Available for analog and digital sticks
- Support for up to 8, 16, or 32 buttons
- Compatible with standard system drivers, no special drivers necessary
- Digital outputs available on some models
- Single +5V power supply
- Available in 24 pin DIL, or 24 pin SOIC

### **1.1 Variants**

JoyWarrior is available in a number of standard variants. Customized versions are possible.

### JoyWarrior24 GP32

- Gamepad style controller, supports four switches for directions
- Supports up to 32 buttons, arranged in a 8x4 matrix, or up to 12 buttons direct connected
- Minimal external component count (1C, 1R)

### JoyWarrior24 A8-8

- Three analog potentiometer axes with 8 bit resolution each
- Supports up to 8 buttons, direct connected to the chip
- Autocalibration and autocentering
- Minimal external component count (2C, 1R)
- Low cost yet high quality solution
- Fully assembled modules available

### JoyWarrior24 A8-16

- Three analog potentiometer axes with 8 bit resolution each
- Supports up to 16 buttons, arranged in a 4x4 matrix
- Autocalibration and autocentering
- Minimal external component count (2C, 1R)
- Low cost yet high quality solution
- Fully assembled modules available

### JoyWarrior24A8L

- Four analog axes with 8 bit resolution each via external A/D
- Supports 8 direct connected buttons or 16 buttons in a 4x4 matrix (pin selectable)
- Four auxiliary outputs capable of direct driving LEDs, supporting flashing modes

### JoyWarrior24A10L

- Three analog axes with 10 bit resolution each via external A/D
- Supports 8 direct connected buttons or 16 buttons in a 4x4 matrix (pin selectable)
- Four auxiliary outputs capable of direct driving LEDs, supporting flashing modes

### JoyWarrior24 RC

- Adapts model RC teacher/student interface as a USB joystick
- See separate data sheet supplement for details

### MouseWarrior24J8

- Mouse/Joystick hybrid low cost controller
- See separate data sheet supplement for details

### MouseWarrior24H8

- Mouse/Joystick hybrid controller
- Compatible with hall sensors
- See separate data sheet supplement for details

### JoyWarrior24F8/F14

- Three axis acceleration sensor
- See separate data sheet supplement for details

### MouseWarrior24F8

- Acceleration sensor based mouse controller
- See separate data sheet supplement for details

### **1.2 Custom variants**

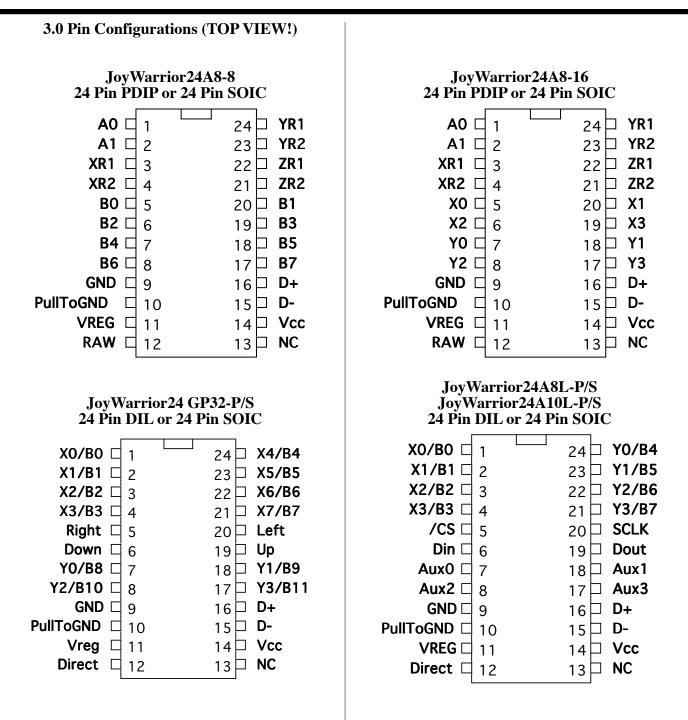
Custom adaptions are available on request. Special function modifications, like controllers for pedals, steering wheels etc. are available on request.

### **1.3 Obsolete variants**

The JoyWarrior20 variants have been discontinued. To replace the JW20 chips use the following active products:

| JW20GP8    | - use JW24GP32 |
|------------|----------------|
| JW20A8-8   | - use JW24A8L  |
| JW20A8-16  | - use JW24A8L  |
| JW20A10-8  | - use JW24A10L |
| JW20A10-16 | - use JW24A10L |

For details on the JW20 chips please refer to the data sheet V1.0.8.


### 2.0 Functional overview

The JoyWarrior family of joystick controllers allows to build USB compatible input devices without the need to acquire USB know how. Mostly only electro-mechanical components need to be added to the JoyWarrior chips.

With the wide variety of controller versions most industrial and game control devices can be built very easily.

| Туре                | Analog | Digital | A/D      | Axes | Bit/Axis | Buttons | Matrix    | Outputs | DIL24        | SOIC24 |
|---------------------|--------|---------|----------|------|----------|---------|-----------|---------|--------------|--------|
| JoyWarrior 24 GP32  | -      |         | -        | -    | n.a.     | 32      | 8x4 or 12 | -       |              |        |
| JoyWarrior 24 A8-8  |        | -       | internal | 3    | 8        | 8       | -         | -       |              |        |
| JoyWarrior 24 A8-16 |        | -       | internal | 3    | 8        | 16      | 4x4       | -       |              |        |
| JoyWarrior 24 A8L   |        | -       | MAX1113  | 4    | 8        | 8 or 16 | 4x4 or 8  | 4       |              |        |
| JoyWarrior 24 A10L  |        | -       | MAX1249  | 3    | 10       | 8 or 16 | 4x4 or 8  | 4       | $\checkmark$ |        |

### 2.1 Product selection matrix



### 4.0 Pin Descriptions JoyWarrior24 GP 32

| Name          | I/O    | Туре                    | Pins                    | Description                                           |
|---------------|--------|-------------------------|-------------------------|-------------------------------------------------------|
| D+, D-        | I/O    | special                 | 16,15                   | USB differential data lines                           |
| X0/B0, X1/B1, | Ι      | input, internal pull up | 1, 2, 3, 4, 24, 23, 22, | Button row inputs, active low for matrix mode,        |
| X2/B2, X3/B3, |        |                         | 21                      | direct button inputs 07 for direct connection, active |
| X4/B4, X5/B5, |        |                         |                         | low                                                   |
| X6/B6, X7/B7  |        |                         |                         |                                                       |
| Y0/B8, Y1/B9, | I or O | output, open drain, or  | 7, 18, 8, 17            | Button column outputs, periodically pulled low for    |
| Y2/B10, Y3/   |        | input, internal pull up |                         | matrix mode, direct button inputs 811 for direction   |
| B11           |        |                         |                         | connection mode, active low                           |
| Right         | Ι      | input, internal pull up | 5                       | Input for right direction switch, active low          |
| Left          | Ι      | input, internal pull up | 20                      | Input for left direction switch, active low           |
| Down          | Ι      | input, internal pull up | 6                       | Input for down direction switch, active low           |
| Up            | Ι      | input, internal pull up | 19                      | Input for up direction switch, active low             |
| VREG          | 0      | special *               | 11                      | Power for USB D- pull up resistor                     |
| PullToGND     | Ι      |                         | 10                      | Used during manufacturing, connect to GND             |
| GND           |        | power supply            | 9                       | Ground                                                |
| Vcc           |        | power supply            | 14                      | Supply voltage                                        |
| Direct        | Ι      | input, internal pull    | 12                      | Pull high to enable 12 direct connected buttons       |
|               |        | down                    |                         | instead of 4x8 matrix                                 |
| NC            |        | unused                  | 13                      | Do not connect                                        |

\* See application circuit for external circuitry.

| Name        | I/O | Туре                    | Pins                    | Description                                           |
|-------------|-----|-------------------------|-------------------------|-------------------------------------------------------|
| D+, D-      | I/O | special                 | 16,15                   | USB differential data lines                           |
| B0, B1, B2, | Ι   | input, internal pull up | 5, 20, 6, 19, 7, 18, 8, | Button inputs, active low                             |
| B3, B4, B5. |     |                         | 17                      |                                                       |
| B6, B7      |     |                         |                         |                                                       |
| A0, A1      | I/O | special *               | 1,2                     | Connect center taps of pots here                      |
| XR1, XR2    | 0   | special *               | 3, 4                    | Connections for X pot                                 |
| YR1, YR2    | 0   | special *               | 24, 23                  | Connections for Y pot                                 |
| ZR1, ZR2    | 0   | special *               | 22, 21                  | Connections for Z pot                                 |
| VREG        | 0   | special *               | 11                      | Power for USB D- pull up resistor                     |
| PullToGND   | Ι   |                         | 10                      | Used during manufacturing, connect to GND             |
| GND         |     | power supply            | 9                       | Ground                                                |
| Vcc         |     | power supply            | 14                      | Supply voltage                                        |
| RAW         | Ι   | input, internal pull    | 12                      | Pull to Vcc to disable auto calibration and centering |
|             |     | down                    |                         |                                                       |
| NC          |     | unused                  | 13                      | Do not connect                                        |

### 4.1 Pin Descriptions JoyWarrior24 A 8-8

\* See application circuit for external circuitry.

| Name              | <b>I/O</b> | Туре                                    | Pins         | Description                                           |
|-------------------|------------|-----------------------------------------|--------------|-------------------------------------------------------|
| D+, D-            | I/O        | special                                 | 16,15        | USB differential data lines                           |
| X0, X1, X2,<br>X3 | Ι          | input, internal pull up                 | 5, 20, 6, 19 | Button row inputs, active low                         |
| Y0, Y1, Y2,<br>Y3 | 0          | output, open drain,<br>internal pull up | 7, 18, 8, 17 | Button column outputs, periodically pulled low        |
| A0, A1            | I/O        | special *                               | 1, 2         | Connect center taps of pots here                      |
| XR1, XR2          | 0          | special *                               | 3,4          | Connections for X pot                                 |
| YR1, YR2          | 0          | special *                               | 24, 23       | Connections for Y pot                                 |
| ZR1, ZR2          | 0          | special *                               | 22, 21       | Connections for Z pot                                 |
| VREG              | 0          | special *                               | 11           | Power for USB D- pull up resistor                     |
| PullToGND         | Ι          |                                         | 10           | Used during manufacturing, connect to GND             |
| GND               |            | power supply                            | 9            | Ground                                                |
| Vcc               |            | power supply                            | 14           | Supply voltage                                        |
| RAW               | I          | input, internal pull<br>down            | 12           | Pull to Vcc to disable auto calibration and centering |
| NC                |            | unused                                  | 13           | Do not connect                                        |

\* See application circuit for external circuitry.

| 4.3 Pin Description | ns JoyWarrior24A8L a | and JoyWarrior24A10L |
|---------------------|----------------------|----------------------|
|---------------------|----------------------|----------------------|

| Name          | I/O    | Туре                      | Pins                    | Description                                      |
|---------------|--------|---------------------------|-------------------------|--------------------------------------------------|
| D+, D-        | I/O    | special                   | 16,15                   | USB differential data lines                      |
| X0/B0, X1/B1, | I or O | input or output, internal | 1, 2, 3, 4, 24, 23, 22, | Button inputs, active low for direct connection  |
| X2/B2, X3/B3, |        | pull up                   | 21                      | mode, row and column lines for matrix mode       |
| Y0/B4, Y1/B5. |        |                           |                         |                                                  |
| Y2/B6, Y3/B7  |        |                           |                         |                                                  |
| /CS, Din,     | I/O    | input or output           | 5, 6, 19, 20            | Connect to external A/D converter                |
| Dout, SCLK    |        |                           |                         |                                                  |
| Aux0, Aux1,   | 0      | output, high and low      | 7, 18, 8, 17            | Auxiliary outputs, capable of sinking up to 50mA |
| Aux2, Aux3    |        | drive                     |                         | (70ma total for all combined)                    |
| VREG          | 0      | special *                 | 11                      | Power for USB D- pull up resistor                |
| PullToGND     | Ι      |                           | 10                      | Used during manufacturing, connect to GND        |
| GND           |        | power supply              | 9                       | Ground                                           |
| Vcc           |        | power supply              | 14                      | Supply voltage                                   |
| Direct        | Ι      | input, internal pull      | 12                      | Pull to Vcc to enable direct connected buttons   |
|               |        | down                      |                         |                                                  |
| NC            |        | unused                    | 13                      | Do not connect                                   |

\* See application circuit for external circuitry.

### 4.4 Pin descriptions

### D+. D-

Differential data lines of USB. Connect these signals direct to a USB cable. D- requires a pull up resistor connecting to VREG, see application circuits for details.

### VREG

Supplies 3.3V for the USB D- pull up resistor. Don't use this pin to supply power to external circuitry, it does only supply sufficient current for the pull up resistor.

### B0..B7 (JoyWarrior24A8-8)

Inputs for the buttons. Connect contacts closing to ground.

Internal pull up resistors.

### X0/B0..X3/B3 or X0/B0..X7/B7

Matrix row inputs for the buttons. In direct mode these pins work as direct button inputs, active low, use contacts closing to ground. Internal pull up resistors.

### Y0/B4..Y3/B7 or Y0/B8..Y3/B11

Matrix column outputs or button inputs for direct mode. In matrix mode these pins are periodically pulled low to determine the status of the buttons. In matrix mode all buttons must be decoupled with diodes, see application circuit for details.

In direct mode these pins act as active low inputs, connect contacts closing to ground.

Open drain outputs or inputs with internal pull up resistor.

### Left, Right, Up, Down (JoyWarrior24GP32)

Inputs for the direction pad. Connect contacts closing to ground. Internal pull up resistors.

#### /CS, SCLK, Din, Dout (JoyWarrior24A8L/ A10L)

Signals to connect to the external A/D converter. JoyWarrior 24A10L requires an external Maxim MAX1249 A/D converter, JoyWarrior24A8L requires a Maxim MAX1113. Internal pull up resistors.

### /Pull to GND

This pin is used during production of the JoyWarrior chips, connect to GND.

### A0, A1 (JoyWarrior24A8-x)

The center taps of the pots and a capacitor are connected to these two pins. The pins are used to charge the capacitor and measure the time it takes to discharge the capacitor via the pots. See application circuits for details.

#### **XR2**, **ZR1**, ZR2 **XR1**, **YR1**, **YR2**, (JoyWarrior24A8-x)

These outputs connect to the outer taps of the pots. One of them is pulled low at a time to measure how long it takes to discharge the capacitor via the pot.

Axis values get smaller when the pot center tap gets closer to the tap connected to the nR1 pin, i.e. resistance between nR1 and A0, A1 gets smaller.

### RAW (JoyWarrior24A8-x)

Pulling this pin to Vcc disables the autocalibration and autocentering function. The chip will then report the raw axis data. This can be useful during design test or for applications that can't accept the autocalibration or autocentering feature. Internal weak pull down resistor.

### Direct (all except JoyWarrior24A8-x)

Pulling this pin high disables the matrix scanning for the buttons and instead uses all button pins as as direct button inputs for up to 8 or 12 (JW24GP32) buttons pulling to GND. All button input pins have internal pull ups.

### Aux0..Aux3 (JoyWarrior24A8L/A10L)

Auxiliary outputs, active low. Each pin is capable to sink up to 50mA (70mA combined for all pins). Push-Pull outputs.

### GND

Power supply ground.

### Vcc

Supply voltage.

#### **5.0 Device Operation**

By following the USB HID specifications JoyWarrior chips are able to work with most operating systems without the need to supply special drivers. Any operating system with support for USB HID game controllers will have the necessary drivers already in place.

### **5.1 Operation with Windows**

Any Windows versions newer than 98 will work with JoyWarrior. Older versions of Windows do not support USB or support only a subset of the functionality.

Upon connecting a JoyWarrior based device for the first time you may be asked to perform the standard driver install. The same may happen if you connect the device to a different USB port on the same computer. In this case let the system install the default drivers.

After the driver installation has completed you should be able to see the device in the "Game Controllers" control panel and be able to access it via DirectInput.

### **5.2 Operation with MacOS**

MacOS 9.0 and up and MacOS X do support JoyWarrior. Some versions of MacOS 8.x do support USB as well, though their use is not recommended.

On MacOS X access to the joystick data is available via the HIDManager.

There will be no warnings or dialogs when a properly functioning JoyWarrior based device is connected under MacOS, it will simply start to work.

### 5.3 Protocol Specifics: JoyWarrior24GP32

Even though JoyWarrior24GP32 is a gamepad style device it does report the directional data as a joystick with two axes of 8 bit each. For left and up directions 0 is reported, for neutral 127 and for right and down 255.

This method was chosen since the gamepad data format does cause problems with several older OS variants (Mac and PC) and some games.

### 5.4 Jitter Filter in JoyWarrior24A8-x

Since any A/D converter generates quantisation noise (the least significant bit jittering at voltages close to the threshold between two values) JoyWarrior24A8-x variants (not JW24A8L) use a simple but efficient jitter filter. Only if the axis values change more than  $\pm 1$  digit the data is actually send to the host. This efficiently eliminates quantisation noise but retains full resolution and reaction speed. If there is still noise on the axis data you should check your circuit for the cause.

If the RAW pin on the JoyWarrior24A8-x is pulled high this will also disable the jitter filter.

### 5.5 Autocalibration and autocentering - JoyWarrior24A8-x

The JoyWarrior24A8-x chips do have а autocentering and autocalibration function that compensates mechanical tolerances of the joystick. When autocalibration and autocentering **1**S activated (i.e. RAW pin is unconnected or pulled to Gnd) upon power up the JoyWarrior24A8-x will sample axis data for about 200msec and then use the current stick position as center. The chip then assumes that each pot will reach 60% of its total range and will scale all axis data accordingly to cover the value range of 0 to 255. If any axis is moved beyond the assumed range the scaling will be adjusted.

To calibrate a joystick with the autocentering feature activated it is sufficient to place the stick to about center before plugging it in and then move the stick to all maximum positions. The JoyWarrior24A8-x will optimize the value scaling for best resolution.

Pulling the RAW pin high for more than 20msec and then let it go low again triggers a recalibration.

### 5.6 Pot and capacitor values for JW24A8-x

The JoyWarrior24A8 is optimized to be used with a 4.7nF capacitor and  $100k\Omega$  pots. A ceramic multi layer capacitor may be used as the measuring capacity. It is not recommended to use ceramic disk type capacitors because of their microphone effect.

Varying the pot or capacitor values may result in sub optimal performance. Larger capacitors may not sufficiently charge or discharge, while smaller values may introduce more noise.

To optimize the setup it is recommended to check out the axis values in RAW mode. Ideally the values in raw mode should range from 0 at one end of the pot position to 255 at the other end.

#### 5.7 Remote Wakeup

All JoyWarrior chips support the remote wakeup feature. They are able to wake the host computer from sleep state if the host operating system does enable this feature.

Remote wakeup is initiated by JoyWarrior if any button is pressed or if any switch of the direction pad closes. Changes on the analog axes are not detected.

#### 5.8 Joystick axis orientation

USB specifies the axis orientation as follows: For the X axis values should increase for left to right movement, Y axis values increase for far to near movements (i.e. pulling the stick gets you larger values), Z axis values should increase for high to low movement.

### **5.9** Non Joystick Applications

USB does allow a Human Interface Device controller to very detailed specify the function of axes and buttons. This gives a game controller device the option to specify a certain axis to be a throttle or break or something else.

The standard JoyWarrior chips are for general use, so the analog axes variants just specify X, Y, Z and the switch inputs are defined as being just buttons. We can modify the controllers to define axes as other inputs, like gas or rudder pedals or support hat switches etc.

However not all available usages are supported by all operating systems and programs. Windows for instance supports only a small subset of the simulation controls page.

If you have special requirements, please contact us about modifications.

### 5.10 Auxiliary outputs on JW24A8L/A10L

The JoyWarrior24A8L and JoyWarrior24A10L chips have four auxiliary outputs that may be used to drive LED indicators or for other applications. Due to the significant current sinking cabability of the outputs they are defined as being active low.

Setting the outputs is done by sending a four byte Feature report to the joystick device. In most cases this can be done via standard file I/O functions.

The outputs are set by one byte each, the first byte sets Aux0, second Aux1 etc.

The bits in the bytes do have the following meaning:

- 7 reserved, write 0
- 6 reserved, write 0
- 5 reserved, write 0
- 4 reserved, write 0
- 3 Invert blink mode
- 2 reserved, write 0
- 1 Mode MSB
- 0 Mode LSB

The mode bits determine the behaviour of the output. Following are the combinations (MSB/LSB):

- 00 Output idle (high)
- 01 Output static on (low)
- 02 Fast blink mode (1/8th second on/off)
- 03 Heart beat blink mode

Heart beat mode switches the output low for 1/16th second, then high for 1/16th, again low for 1/16th and then idles high for 13/16th seconds.

The invert bit reverts the ouput status for the blink modes (no effect on static on/off), this allows to have two indicators blink in an exactly alternating pattern.

The output status and blinking is maintained by the JoyWarrior withoput further host interaction until a new configuration is send. All outputs go to idle when the JoyWarrior enters suspend mode.

### 6.0 Absolute Maximum Ratings

| Storage Temperature                    | 65°C to +150°C                  |
|----------------------------------------|---------------------------------|
| Ambient Temperature with power applied | $-0^{\circ}C$ to $+70^{\circ}C$ |
| Supply voltage on Vcc relative to Gnd  |                                 |
| DC input voltage                       |                                 |
| Maximum current into all ports         | 70mA                            |
| Power Dissipation                      | 300mW                           |
| Static discharge voltage               | >2000V                          |
| Latch-up current                       | >200mA                          |

### **6.1 DC Characteristics**

|                    | Parameter                             | Min   | Max   | Units | Remarks                      |
|--------------------|---------------------------------------|-------|-------|-------|------------------------------|
| V <sub>cc</sub>    | Operating Voltage                     | 4.35  | 5.25  | V     |                              |
| I <sub>cc</sub>    | Operating Supply Current (no loading) |       | 20    | mA    |                              |
| I <sub>sb</sub>    | Suspend mode current                  |       | 25    | μA    | Oscillator off               |
| I <sub>ol</sub>    | Sink current on output pins           |       | 2     | mA    | Vout = 0.4V                  |
| R <sub>up</sub>    | Pull-up Resistance                    | 8     | 24    | kΩ    |                              |
| Iolaux             | Sink current into Aux pins            |       | 50    | mA    | Vout = 0.8V                  |
| I <sub>ohaux</sub> | Source current from Aux pins          |       | 2     | mA    | Vout > Vcc-2V                |
| I <sub>snk</sub>   | Combined sink current into all pins   |       | 70    | mA    | Cummulative across all ports |
| V <sub>ith</sub>   | Input Threshold Voltage               | 40%   | 60%   | Vcc   |                              |
|                    | USB Interface                         |       |       |       |                              |
| Voh                | Static output high                    | 2.7   | 3.6   | V     | $15k\Omega \pm 5\%$ to GND   |
| Vol                | Static output low                     |       | 0.3   | V     |                              |
| V <sub>di</sub>    | Differential Input sensitivity        | 0.2   |       | V     | l(D+)-(D-)l                  |
| V <sub>cm</sub>    | Differential Input common Mode Range  | 0.8   | 2.5   | V     |                              |
| Vse                | Single Ended Transceiver Threshold    | 0.8   | 2.0   | V     |                              |
| Cin                | Transceiver capacitance               |       | 20    | pF    |                              |
| Iio                | Hi-Z State Data Line Leakage          | -10   | 10    | μΑ    | 0V < Vin < 3.3V, Hi-Z State  |
| R <sub>pu</sub>    | Bus Pull-up resistance                | 1.274 | 1.326 | kΩ    | 1.3kΩ±2% to Vcc *            |
| R <sub>pd</sub>    | Bus Pull-down resístance              | 14.25 | 15.75 | kΩ    | 15kΩ±5%                      |

### 6.2 AC Characteristics

|                    | Parameter                           | Min    | Max    | Units  | Remarks                |
|--------------------|-------------------------------------|--------|--------|--------|------------------------|
|                    | USB Driver Characteristics          |        |        |        |                        |
| t <sub>r</sub>     | Transition rise time                | 75     |        | ns     | CLoad = 200pF          |
| t <sub>r</sub>     | Transition rise time                |        | 300    | ns     | CLoad = 600pF          |
| t <sub>f</sub>     | Transition fall time                | 75     |        | ns     | CLoad = 200pF          |
| t <sub>f</sub>     | Transition fall time                |        | 300    | ns     | CLoad = 600pF          |
| t <sub>rfm</sub>   | Rise/Fall Time matching             | 80     | 125    | %      |                        |
| V <sub>crs</sub>   | Output signal crossover voltage     | 1.3    | 2.0    | V      |                        |
|                    | USB Data Timing                     |        |        |        |                        |
| t <sub>drate</sub> | Low Speed Data Rate                 | 1.4775 | 1.5225 | MBit/s |                        |
| t <sub>djr1</sub>  | Receiver data jitter tolerance      | -75    | 75     | ns     | To next transition     |
| t <sub>djr2</sub>  | Receiver data jitter tolerance      | -45    | 45     | ns     | For paired transitions |
| tdeop              | Differential to EOP transition skew | -40    | 100    | ns     |                        |
| teopr2             | EOP width at reeiver                | 670    |        | ns     | Accepts as EOP         |
| teopt              | Source EOP width                    | 1.25   | 1.50   | μs     |                        |
| t <sub>udj1</sub>  | Differential driver jitter          | -95    | 95     | ns     | To next transition     |
| t <sub>udj2</sub>  | Differential driver jitter          | -150   | 150    | ns     | To paired transition   |

### 7. Ordering information

The chips listed here are standard products. Customized chips are available on request.

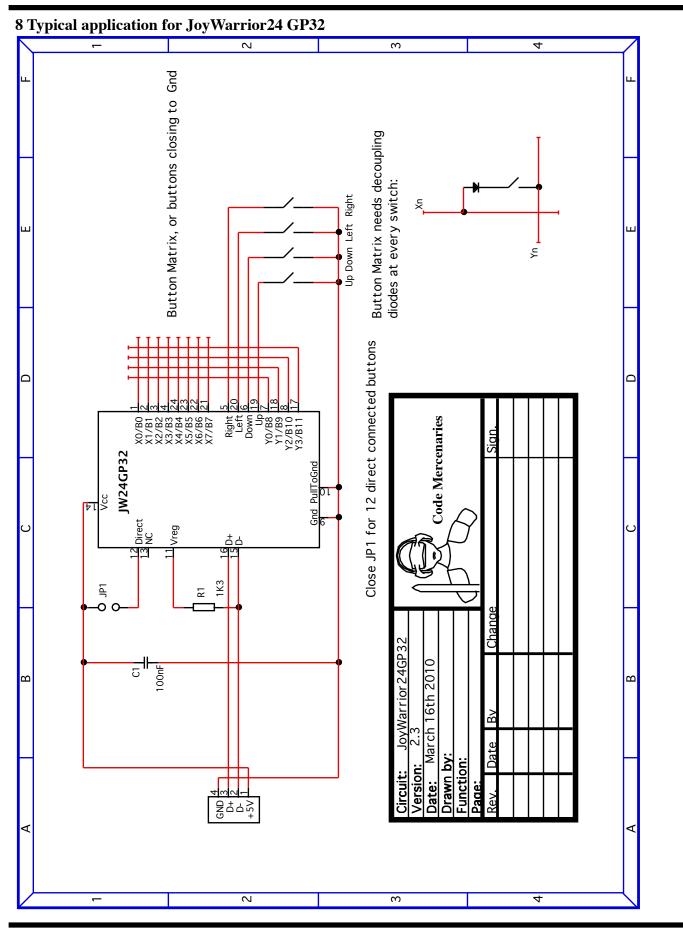
| Partname            | Order Code  | Description                                                          | Package |
|---------------------|-------------|----------------------------------------------------------------------|---------|
| JoyWarrior24 GP 32  | JW20GP32-P  | Gamepad controller supports up to 32 buttons, 8x4 matrix             | PDIP24  |
| JoyWarrior24 GP 32  | JW20GP32-S  | Gamepad controller supports up to 32 buttons, 8x4 matrix             | SOIC24  |
| JoyWarrior24 A8-8   | JW24A8-8-P  | Joystick controller, 3 axis, 8 bit, autocenter/cal, up to 8 buttons  | PDIP24  |
| JoyWarrior24 A8-8   | JW24A8-8-S  | Joystick controller, 3 axis, 8 bit, autocenter/cal, up to 8 buttons  | SOIC24  |
| JoyWarrior24 A8-16  | JW24A8-16-P | Joystick controller, 3 axis, 8 bit, autocenter/cal, up to 16 buttons | PDIP24  |
| JoyWarrior24 A8-16  | JW24A8-16-S | Joystick controller, 3 axis, 8 bit, autocenter/cal, up to 16 buttons | SOIC24  |
| JoyWarrior24A8L     | JW24A8L-P   | Joystick controller, four axes 8 bit, auxiliary outputs              | PDIP24  |
| JoyWarrior24A8L     | JW24A8L-S   | Joystick controller, four axes 8 bit, auxiliary outputs              | SOIC24  |
| JoyWarrior24A10L    | JW24A10L-P  | Joystick controller, three axes 10 bit, auxiliary outputs            | PDIP24  |
| JoyWarrior24A10L    | JW24A10L-S  | Joystick controller, three axes 10 bit, auxiliary outputs            | SOIC24  |
| JoyWarrior20 GP 8   | end-of-life | don't use for new designs                                            |         |
| JoyWarrior20 A8-8   | end-of-life | don't use for new designs                                            |         |
| JoyWarrior20 A8-16  | end-of-life | don't use for new designs                                            |         |
| JoyWarrior20 A10-8  | end-of-life | don't use for new designs                                            |         |
| JoyWarrior20 A10-16 | end-of-life | don't use for new designs                                            |         |

### 7.1 Packaging info

PDIP24 chips come in tubes with 16 chips each.

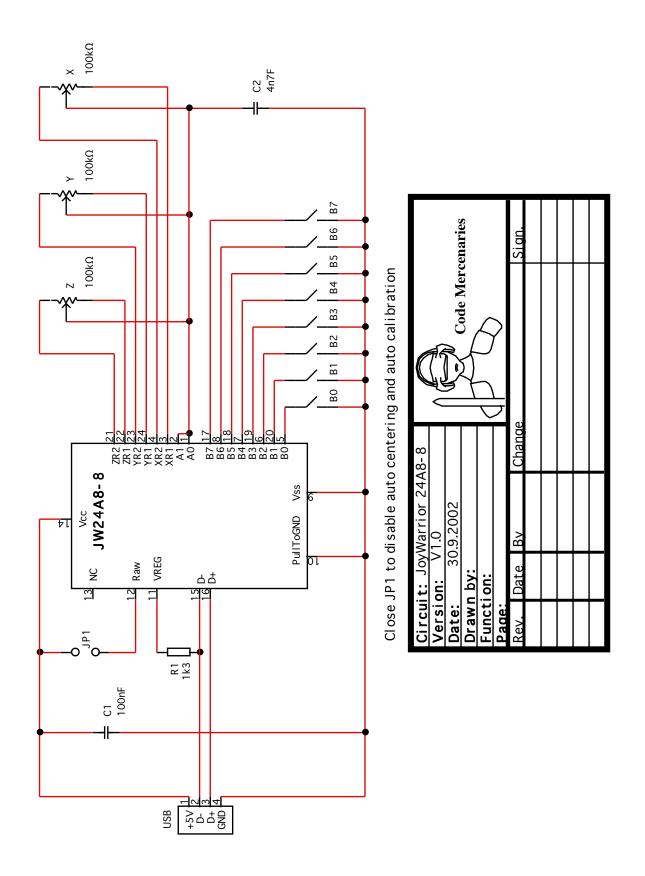
SOIC24 chips come in tubes with 31 chips each.

To assure best handling and shipping safety please order the chips in full tubes.

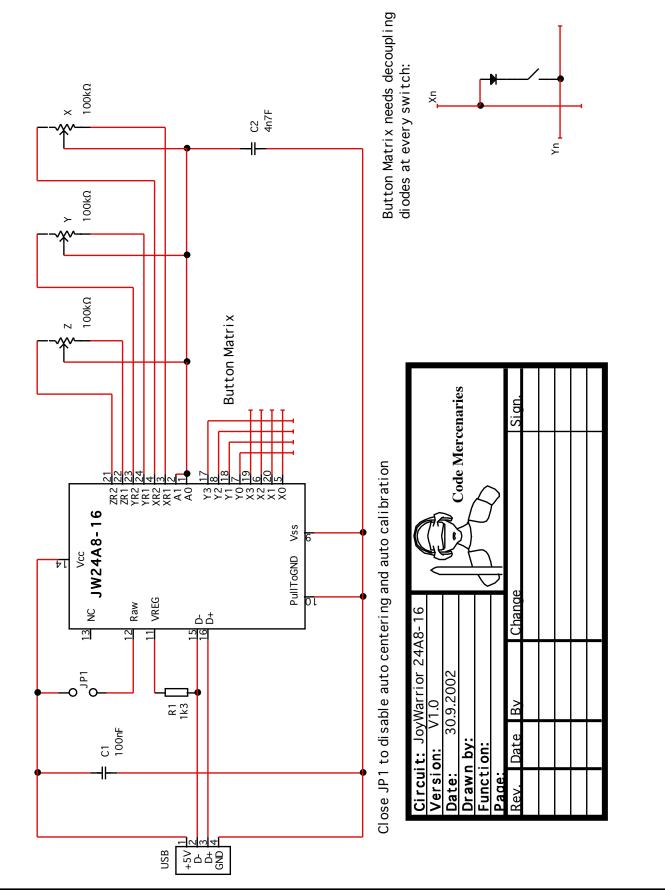

### 7.2 USB VendorID and ProductID

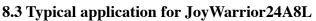
By default all JoyWarrior chips are shipped with the USB VendorID of Code Mercenaries (\$7C0 or decimal 1984) and a fixed ProductID. On request chips can be equipped with the customers VendorID and ProductID. VendorIDs can be obtained from the USB Implementers Forum <www.usb.org> Customized chips are subject to minimum order quantities, contact <sales@codemercs.com> for details.

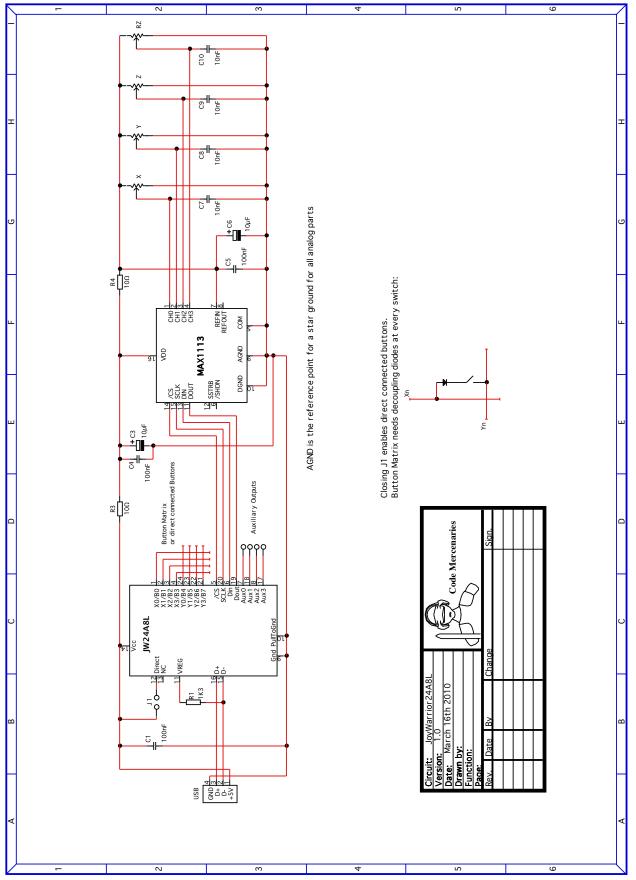
### 7.3 Product IDs, Versions and Production Status


Following is the current status for all JoyWarrior variants and the Product ID information. ProductIDs are independent of the package type. The MouseWarrior chips listed are based on the JoyWarrior core.

| Partname            | Product ID | Current Shipping Version | Status      |
|---------------------|------------|--------------------------|-------------|
| JoyWarrior20 GP 8   | \$1100     | V1.0.3.B                 | end of life |
| JoyWarrior24 GP 32  | \$1101     | V1.0.3.3                 | active      |
| JoyWarrior24 A8-8   | \$1104     | V1.0.3.0                 | active      |
| JoyWarrior24 A8-16  | \$1105     | V1.0.3.0                 | active      |
| JoyWarrior20 A10-8  | \$1108     | V1.0.3.B                 | end of life |
| JoyWarrior20 A10-16 | \$1109     | V1.0.3.B                 | end of life |
| JoyWarrior20 A8-8   | \$110A     | V1.0.3.B                 | end of life |
| JoyWarrior20 A8-16  | \$110B     | V1.0.3.B                 | end of life |
| JoyWarrior24RC      | \$1110     | V1.0.3.5                 | active      |
| MouseWarrior24J8    | \$1112     | V1.0.3.3                 | active      |
| JoyWarrior24F8      | \$1113     | V1.0.3.8                 | active      |
| MouseWarrior24F8    | \$1114     | V1.0.3.8                 | active      |
| MouseWarrior24H8    | \$1115     | V1.0.3.7                 | active      |
| JoyWarrior24F14     | \$1116     | V1.0.4.0                 | active      |
| JoyWarrior24A8L     | \$1117     | V1.0.4.1                 | active      |
| JoyWarrior24A10L    | \$1118     | V1.0.4.1                 | active      |



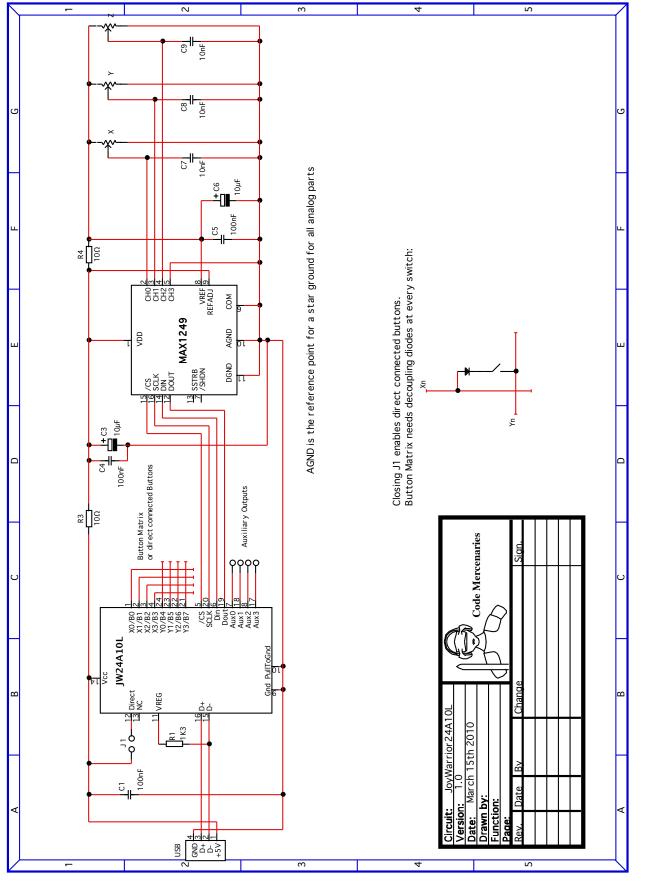


V 1.1.0, July 1st 2010 for Chip Revision V1.0.4.0 and up


### 8.1 Typical application for JoyWarrior24 A8-8



### 8.2 Typical application for JoyWarrior24 A8-16

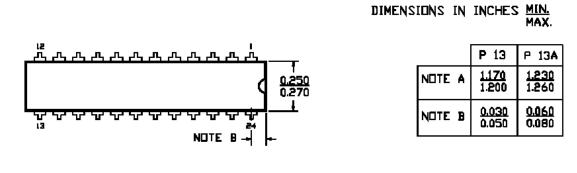


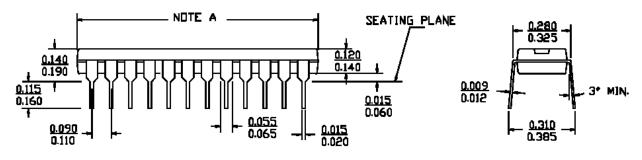




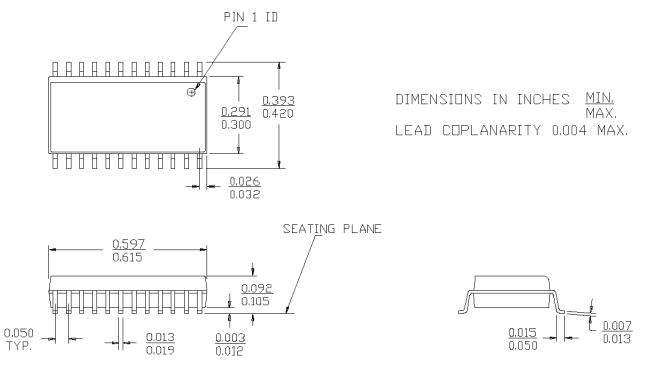

V 1.1.0, July 1st 2010 for Chip Revision V1.0.4.0 and up

### **Code Mercenaries**


### 8.4 Typical application for JoyWarrior24A10L




V 1.1.0, July 1st 2010 for Chip Revision V1.0.4.0 and up


### 9. Package Dimensions

### 24 Pin PDIP





24 Pin SOIC



### **10. ESD Considerations**

JoyWarrior has an internal ESD protection to withstand discharges of more than 2000V without permanent damage. However ESD may disrupt normal operation of the chip and cause it to exhibit erratic behaviour.

For the typical office environment the 2000V protection is normally sufficient. Though for industrial use additional measures may be necessary.

When adding ESD protection to the signals special care must be taken on the USB signal lines. The USB has very low tolerance for additional resistance or capacitance introduced on the USB differential signals.

Series resistors of  $27\Omega$  may be used alone or in addition to some kind of suppressor device. In any case the USB 2.0 specification chapter 6 and 7 should be read for detailed specification of the electrical properties.

### **10.1 EMC Considerations**

JoyWarrior uses relatively low power levels and so it causes few EMC problems.

To avoid any EMC problems the following rules should followed:

- Put the 100nF ceramic capacitor right next to the power supply pins of the chip and make sure the PCB traces between the chips power pins and the capacitor are as short as possible.
- Run the power supply lines first to the capacitor, then to the chip.
- Make the matrix lines only as long as absolutely necessary.
- Keep the two USB signal lines close to each other, route no other signal between them. USB uses differential signalling so the best signal quality with lowest RF emission is achieved by putting these lines very close to each other.
- Adding a ferrite bead to the +5V power supply line is advisable.

### 11. Revision History

The initial release version of JoyWarrior is V1.0.2.0, earlier versions were custom designs not available for general use.

### V1.0.4.1

First shipping version of JW24A8L and JW24A10L

### V1.0.4.0

- Discontinued JW20 branch of chips.
- Added JW24A8L and JW24A10L
- Added JW24F14 (aka Tomcat) acceleration

sensor.

### V1.0.3.B

 Fixed a spurious enumeration problem with JW20 variants on Linux. JW24 chips are not affected. On UHCI hosts it was possible that reading the device descriptors could fail.
Windows and MacOS were not affected due to a different error recovery method of their system drivers.

### V1.0.3.A

- Customer specific chips, no general release

### V1.0.3.9

- Customer specific chips, no general release

### V1.0.3.8

- Added MW24F8 variant
- Fixed a race condition in JW24F8 that could lead to wrong data when values were jittering around a 256 boundary.

### V1.0.3.7

- Added MW24H8 variant

### V1.0.3.6

- Added JW24F8 variant

### V1.0.3.5

- Added Zhen Hua protocol to JW24RC

### V1.0.3.4

- Added customer specific chips
- Changed reset timing for JW20 variants.
- Not a general release!

### V1.0.3.3

- Added MouseWarrior24J8.
- Removed jitter filter on JW20A8 and JW20A10.
- Relaxed timing of matrix scan function of JW20A8-16 and JW20A10-16.
- Added direct connected button mode on JW24GP32 allowing 12 buttons connected pulling to ground instead of using a matrix.

### V1.0.3.2

- Release for customer specific chips, not generally available.

### V1.0.3.1

- Fixed a problem in JW24RC that could cause it not to detect the correct signal polarity of the PPM signal.

### V1.0.3.0

- Added JoyWarrior20A8-8, JoyWarrior20A8-16, and JoyWarrior24RC variants.
- Moved JoyWarrior24GP32 to new silicon reducing external circuitry and adding the option for a DIL24 package.
- Improved auto-calibration and -centering on JoyWarrior24A8 so unused axes with no pots connected no longer block operation.

### V1.0.2.1

- Added JoyWarrior24A8-8 and JoyWarrior24A8-16 variants.

### V1.0.2.0

- Initial general release.

### Legal Stuff

This document is ©1999-2010 by Code Mercenaries.

The information contained herein is subject to change without notice. Code Mercenaries makes no claims as to the completeness or correctness of the information contained in this document.

Code Mercenaries assumes no responsibility for the use of any circuitry other than circuitry embodied in a Code Mercenaries product. Nor does it convey or imply any license under patent or other rights.

Code Mercenaries products may not be used in any medical apparatus or other technical products that are critical for the functioning of lifesaving or supporting systems. We define these systems as such that in the case of failure may lead to the death or injury of a person. Incorporation in such a system requires the explicit written permission of the president of Code Mercenaries.

Trademarks used in this document are properties of their respective owners.

Code Mercenaries Hard- und Software GmbH Karl-Marx-Str. 147a 12529 Schönefeld OT Grossziethen Germany Tel: x49-3379-20509-20 Fax: x49-33790-20509-30 Mail: support@codemercs.com Web: www.codemercs.com

HRB 9868 CB Geschäftsführer: Guido Körber, Christian Lucht